Train, Diagnose and Fix: Interpretable Approach for Fine-grained Action Recognition

نویسندگان

  • Jingxuan Hou
  • Tae Soo Kim
  • Austin Reiter
چکیده

Despite the growing discriminative capabilities of modern deep learning methods for recognition tasks, the inner workings of the state-of-art models still remain mostly black-boxes. In this paper, we propose a systematic interpretation of model parameters and hidden representations of Residual Temporal Convolutional Networks (Res-TCN) for action recognition in time-series data. We also propose a Feature Map Decoder as part of the interpretation analysis, which outputs a representation of model’s hidden variables in the same domain as the input. Such analysis empowers us to expose model’s characteristic learning patterns in an interpretable way. For example, through the diagnosis analysis, we discovered that our model has learned to achieve view-point invariance by implicitly learning to perform rotational normalization of the input to a more discriminative view. Based on the findings from the model interpretation analysis, we propose a targeted refinement technique, which can generalize to various other recognition models. The proposed work introduces a three-stage paradigm for model learning: training, interpretable diagnosis and targeted refinement. We validate our approach on skeleton based 3D human action recognition benchmark of NTU RGB+D. We show that the proposed workflow is an effective model learning strategy and the resulting Multi-stream Residual Temporal Convolutional Network (MS-Res-TCN) achieves the state-of-the-art performance on NTU RGB+D.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database

The paper presents an emerging issue of fine-grained pedestrian action recognition that induces an advanced pre-crush safety to estimate a pedestrian intention in advance. The fine-grained pedestrian actions include visually slight differences (e.g., walking straight and crossing), which are difficult to distinguish from each other. It is believed that the fine-grained action recognition induce...

متن کامل

A New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)

Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...

متن کامل

Multi-resolution Tensor Learning for Large-Scale Spatial Data

High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MRTL, that can significantly speed up the process for spatial tensor models. MRTL leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MRTL learns ...

متن کامل

Pipelining Localized Semantic Features for Fine-Grained Action Recognition

In fine-grained action (object manipulation) recognition, it is important to encode object semantic (contextual) information, i.e., which object is being manipulated and how it is being operated. However, previous methods for action recognition often represent the semantic information in a global and coarse way and therefore cannot cope with fine-grained actions. In this work, we propose a repr...

متن کامل

Segmental Spatio-Temporal CNNs for Fine-grained Action Segmentation and Classification

Joint segmentation and classification of fine-grained actions is important for applications in human-robot interaction, video surveillance, and human skill evaluation. However, despite substantial recent progress in large scale action classification, the performance of state-ofthe-art fine-grained action recognition approaches remains low. In this paper, we propose a new spatio-temporal CNN mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.08502  شماره 

صفحات  -

تاریخ انتشار 2017